

NC Global Warming Cornerstones

Legislative Commission on Global Climate Change November 2008

Overview

Energy Efficiency

Clean Energy

Long-Range Planning

Pollution Capture

Goal: 60% Reduction by 2030

CAPAG ←→ **Cornerstones**

Year	CAPAG (million tons CO ₂ equiv.)	Cornerstones (million tons CO ₂ equiv.)
1990 - actual	136	n/a
2000 - actual	180	170
2010 - forecast	215	192
2020 - forecast	256	226
2020 - with policies	137	119
Reduction vs 2000	24%	30%

- · Cornerstones draws on the CAPAG report, but includes updated data.
- · Updated data and other adjustments resulted in lower emissions growth.
- Cornerstones urges somewhat more rapid and expansive policies.

Energy Efficiency: Highest Priority

Energy Recycling

Conventional Central Generation

Recycled Energy (at user sites)

Illustrations courtesy of Recycled Energy Development, LLC

Larger Savings → **Lower Cost**

Florida Emphasizes Capacity Savings over Energy Savings

Customers buy less electricity, cause less global warming pollution.

Source: SACE analysis of Energy Information Administration data (2005-06)

Achieving Energy Efficiency

- · Homes, businesses and factories @ 2 4 ¢ / kWh
 - Building codes, appliance/equipment standards
 - Energy Efficiency Resource Standard (RPS / EPS / REPS)
 - Rate structure reform (decoupling)
 - New utility programs

- · Energy recycling (CHP)
 - Rate structure reform (decoupling, interconnection)
 - State outreach

- Fuel economy
 - Plug-in hybrid electric vehicle technology development
 - California vehicle emissions standards
 - Federal fuel economy standards

cleanenergy.org

11

Energy Efficiency Helps Out

- Less electricity demand ->
 - easier to reach renewable goals
 - lower cost generation solutions
 - saves critical resources (water)

Energy recycling (CHP / waste heat recovery) ->

- lower grid infrastructure costs
- Solar, etc. a better "fit"
- Less fuel demand →
 - easier to reach biofuels goals
 - less air pollution

12

Clean Energy: Electricity

Clean Energy: Wind

Ridge tops in WNC:

- Most cost-effective
- 11 million MWh potential at low impact sites

· Offshore wind:

- Enormous potential
- Less cost than nuclear power
- Unclear permitting process

• 20 million MWh by 2030:

- <10% of feasible generation
- < 5% of theoretical potential

14

Low-impact Hydroelectric

- Today: 5 million MWh
- 2030: 7 million MWh
- · Resources:
 - Upgrades of existing dams
 - Small "low-head" (no dam) projects
 - Many projects best suited for third parties, not utilities

Photo courtesy of Energy Systems and Design

cleanenergy.org

15

Clean Energy: Biopower

- Today: 2 million MWh
- 2030: 14 million MWh
- Resources:
 - Agricultural and wood wastes
 - Energy crops grown on disused land

16

Clean Energy: Solar

- · Solar hot water
 - Cost-effective
 - Rapid growth
- REPS carve-out driving PV
 - Small-scale (homes)
 - Pilot utility projects
- · Customers face problems
 - Net metering gets an "F"
 - REPS-driven projects should deliver solutions

Clean Energy: Fuels

- Regionally-produced biofuels
- Can supply 25-30% of demand
 - Depends on meeting efficiency targets
- Pollution reduction achieved with:
 - Biodiesel (waste oil, oilseeds)
 - Cellulosic ethanol

18

Pollution Capture: Geologic

- · Capture-capable coal plants send CO2 to TN or offshore
- · Pipeline cost less than 15% total project cost
- · With efficiency and clean energy, cost could be \$800 million
- This is less than 1 cent per kWh generated electricity

cleanenergy.org

Foundation for a Clean Energy Future

Pollution Capture: Landscape

Photos courtesy of Alabama NRCS and University of Bayreuth

21

Biochar R&D

Long-term Planning

Planning for Family Budgets

 Housing + transportation costs are lower in central cities

Long-Range Planning for a Changed North Carolina

24

Sea Level Rise

Where does 60% lead?

- Stabilize emissions to reach 450 ppm by 2050?
 - No ⊗
 - emissions flatten out from 2030 to 2050
- Is 450 ppm by 2050 enough?
 - Maybe not, Hansen talking about needing to stabilize at 350 ppm now
- But . . . 2 decades gives us time to find better solutions
 - (fingers crossed)

Source: Kharecha and Hansen, Global Biogeochemical Cycles (2007), and Hansen et al., Atmospheric Chemistry and Physics (2007).

26

Cornerstones

	Pollution Reduction Strategies	Projections for 2030
		reductions in millions of tons
	Energy efficiency	126.6
	Homes, buildings and factories	52.9
7	Energy recycling	33.1
	Fuel economy	40.6
	Clean energy	37.2
	Wind, bioenergy and hydroelectric	25.6
F	Methane to energy (hog and landfill waste)	11.6
	Pollution capture	31.1
	Carbon enrichment of landscape	5.5
	Underground storage of global warming pollution	25.5
	Long-range planning	19.0
	Total for 60% reduction	213.9

cleanenergy.org

Action Today

28

Legislative Action

· Energy Efficiency

- Appliance standards / building energy codes (adopted, need action)
- State efficiency standard (go beyond REPS)
- Natural gas efficiency program
- Energy recycling program (study & net metering recommendations adopted, need action)

29

· Clean Energy

- Law and programs to foster inland and offshore wind

· Pollution Capture

State permitting requirement (CO₂ emission limit)

Research and Policy Questions

- State funding and policy leadership

cleanenergy.org

Contact Information

John D. Wilson Director of Research wilson@jdwilson.net

Ulla-Britt Reeves
Regional Program Director
ureeves@cleanenergy.org

828-254-6776

http://www.cleanenergy.org/hottopics/index.cfm?id=88

30

